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Abstract 

 

“When Fourier meets Navier” in the physical  2/1H Hilbert space there is a global 

unique solution of the corresponding weak variation equation of the non-linear, 
non-stationary Navier-Stokes equations ([BrK1]). The corresponding numerical 
approximation method is the Ritz-Galerkin method which is usually equipped with 
finite elements approximation spaces. In case of negative scale physical spaces 
this is called boundary element method related to the underlying singular equation 
representation. The finite (boundary) element approximation properties face some 
challenges in case of non-linearity and/or non-periodic boundary conditions. The 
wavelet extension method is used to represent functions that have discontinuities 
and sharp peaks, and for accurately deconstructing and reconstructing finite, non-
periodic and/or non-stationary signals [MeM]. 

 

The wavelet theory is established in the Fourier 2L Hilbert space framework. As a 

consequence in order to apply the Calderón repreducing formula this requires to 

the so-called admissibility condition defining a wavelet 
2L  analyzing a (signal) 

function 
2Lf  . The challenge for the wavelet extension (approximation) method is 

about the combination of finite elements (“to approximate on regular function 
domains”) applied to within the physical space and wavelets (treating the “nasty” 
non-linear terms (shocks) or the non-periodic (sharp edges) boundary conditions 
applied to within the wavelet space. 
 

Following the slogan ”when Fourier (generalized waves) meets Calderón 
(generalized wavelets)” we provide a Galerkin-expansion-wavelet method which 

operates on same physical and wavelet space which is 
2/1H . The isometry of the 

generalized wavelet transform is given by 
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The space  2/1H  is motivated by the original Calderón formula: 
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Then for  
2Lf   it holds the reproducing formula 
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This reflects a not balanced “relationship” between the Hilbert spaces 

10  HH . 

 
 
 
 
 



Fourier (physical  2/1H space) meets Calderón (wavelet  2/1H space) 

 

 
Most common numerical methods used for numerical solution of partial differential equations are 
spectral, finite element (FEM) or wavelet methods. While spectral methods have good accuracy its 
spatial localization is poor (Gibbs phenomenon) the FEM for PDE with smooth boundary conditions 
have good accuracy and good spatial localization [BrK]. In case of singularity at the boundary good 
accuracy of FEM can be achieved, as well. However this requires additional problem depending 
modification of the approximation spaces (e.g. [BlH] [NiJ]).   
 

In [ChF] a Nitsche-based domain composition method is defined and analyzed for the solution of 

hypersingular integral equations governing the Laplacian in 3R  exterior to an open surface, subject to 
a Neumann boundary problem. The method can be applied to linear elasticity and acoustics problems, 
but in case the operator governing the Lamé equation causes major difficulties. 
 

A wavelet is a function used to divide a given function or continuous signal into different scale 
components. A wavelet is a 2L integrable function   fulfilling the admissibility condition 
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For the parameters for  0Ra , Rb  it enables the definition of the wavelet transformation by  
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The parameters ba,   are called dilation (re-scale, zooming) resp. translation (shift) parameter. For 

0a the parameter can be interpreted as a reciprocal of frequency. The admissibility condition 

ensures the validity of the Calderón reconstruction formula 
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whereby it holds 
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Wavelet transformation analysis is applied especially to nonlinear PDEs having solutions containing 
local phenomena (e.g. formation of shocks like hurricanes) and interactions between several scales 
(e.g. atmospheric turbulence where there is motion on continuous range of length scales). Such 
solutions can be well represented in wavelet bases because of properties like compact support 
(locality in space) and vanishing moment (locality in time).  
 

Most of the wavelet algorithms can handle periodic boundary conditions. However, different 
possibilities of dealing general boundary conditions have been studied and the advantage of wavelet 
transforms over traditional Fourier transforms for representing functions that have discontinuities and 
sharp peaks, and for accurately deconstructing and reconstructing finite, non-periodic and/or non-
stationary signals are still pending ([MeM]).  
 

The Hilbert transformed wavelet approach could allow the direct numerical simulation of scattering and 
radiation phenomena while avoiding the limitations of boundary element methods (non-uniqueness) 
and the constraints of artificial, non-reflective boundary conditions.  
 

The various properties of the Hilbert transform and its related Hilbert transformed wavelets suggest 
that they might be useful for solving exterior boundary value problems with prescribed behavior at the 
point at  . For instance, acoustic radiation from a compact object is described by a solution of the 
wave equation that satisfies the Sommerfeld radiation condition at   .  
 



The scaling and wavelets functions of compact support can be defined on the real line, R , or on the 
circle (is period) ([WeJ]). The Hilbert transform of a compactly-supported wavelet is also a wavelet 
([WeJ]). That is, the Hilbert transformed wavelets are orthogonal to their translates and form a basis 

for )(2 RL  . The Hilbert transform scaling and wavelet functions do not have compact support. Their 

support is all of R . The periodic Hilbert transform is defined by a  )cot(x  kernel. The periodic Hilbert 

transform of a periodic, compact support scaling or wavelet function is not a periodic solution of a 
scaling relation. 
 

In Galerkin method the degrees of freedom are the expansion coefficients of a set of basis functions 
and these expansion coefficients are not in physical state in case of a wavelet Galerkin method, 
means in wavelet space. Moreover, in wavelet Galerkin methods the treatment of nonlinearities is 
complicated when can be handled with couple of techniques ([MeM]): 
 

- using the connection coefficients 
- using the quadrature formula 
- using the “pseudo-approach” (first map wavelet space to physical space, compute nonlinear 

term in physical space and then back to wavelet space); this approach is not very practical 
because it requires transformation between the physical and the wavelet space. 

 

We propose generalized wavelets to be used by the “pseudo-approach” for the treatment of 
nonlinearities where the wavelet space is identical with the appropriately defined physical space as 
proposed in [BrK1]. At the same time the approach overcomes the limitations of boundary element 
methods (non-uniqueness) and the constraints of artificial, non-reflective boundary conditions of 
scattering and radiation phenomena.  
 

The approach can be extended to continuous radial wavelet transform on nR  with scales a  and 

orientations )(nSOR   being related to a Riesz basis enabling dilations, rotations and translation of a 

single function   ([RaH]). The corresponding admissibility condition is given by 
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For a radial function )()()( rFxFxf   it holds 
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with the Fourier transform of the uniform distribution of unit mass over the unit sphere with center at 
the origin given by 
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With respect to the Hilbert-Courant conjecture in the context of the wave radiation problem (regarding 
the existence of families of distortion-free, progressive waves and the Huygens principle, [BrK2]) and 

the straightforward generalization of the below for a continuous radial wavelet theory on nR  
([RaH]v1.5.2) we note that 

 
- 00(ˆ d     iff    the space-time dimension is 4n , ([WaG]2.13, 15.5: 0)02(0 J ) 

- the spatial lattice is equidistant only in the special cases of space-time dimensions 4,2n , 

([RaH] chapter 3) 

- the analog properties of classical Riesz transforms on spheres ([ArN]). 



In this paper we consider the Poisson boundary value (model) problem with non-periodic boundary 
condition for space(-time) dimension 2n  and generalized periodic function of the Hilbert spaces 

)(  HH . The related FEM/BEM optimal Galerkin approximation analysis also in case of locally 

reduced regularity assumptions to the solution is given in [BrK]. 
 

Let  )(*

2  LH  with )( 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 2 periodic 

function and  denotes the integral from 0  to 2  in the Cauchy-sense. Then for )(: 2  LHu  with 

)(: 21 RS  and for real   Fourier coefficients and norms are defined by      
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Then the Fourier coefficients of the convolution operator 
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are given by     
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The operator A  enables characterization of the Hilbert spaces  and 
2/1H  in the form 
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We note that 00 k . In this framework the admissibility condition for standard wavelets  is equivalent 

to  
2/1H  and the admissibility condition constant is given by the norm 2

2/1
 . 

 

The (simple layer potential) integral equation gA   solves the boundary value problem 

 

0     in      1),(: 222  yxRyxD  

 g      on     DRS  )(: 21  . 
 
The related Ritz method using spline spaces is called boundary finite element method (BEM). In the case above 

this defines a (Ritz-) Galerkin approximation  
2/1:  HSR hhh    
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with optimal approximation behavior with respect to the related regularity of the solution    and the 

triangle parameter h  ([BrK]). Let 
hh A   the corresponding approximation of the Ritz approximation 

h  of gA  . Then the error 
h   can be represented in the form ),(ln)( hh     whereby  
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and 
21  i , iyei  21  . For 

21  i  with 1  fixed the function iyey   ln:)(  is analytical 

with respect to y . From the Schwarz inequality it therefore follows  
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The limitation of the “pseudo approach” ([MeM]) in the sense that there is no mapping required from the wavelet 
space to the physical space and then back to compute nonlinear terms in physical space is enable by the 

following isometry properties of generalized wavelets defined as 
2/1H . 

 

Theorem:  For every 
2/1H  Calderón’s reproducing identity holds true, i.e. 
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Proof:  
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Remark: due to corresponding properties of the Hilbert transform (i.e.  H , 0),(  H , 

0)0()( H ,   AH ) the relationship between the generalized wavelets (
2/1H ) and the 

standard wavelet (
0H , c , 0)0(ˆ  ) is given by 
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Remark: the extension of the above to space dimensions 2n is enabled by the Prandtl and the 

multi-dimensional analog to the Hilbert transform, the Riesz operators. With respect to the Prandtl 

operator we recall from [LiI] 
 

Theorem: The Prandtl operator 
2/12/1:  HH  is bounded and coercive, the range 

)()( 3

1 SRHR   and the exterior Neumann problem admit one and only on 

generalized solution. 
 

The theorem prompts to introduce in case of a physical   2/1H  space the corresponding energy inner 

product in the form
2/1),(  vu .  

 

In the above Hilbert space framework the Prandtl operator corresponds to the normal derivative of the 

double layer potential operator )()(: 2/12/1  HHT   ([KrR] theorem 8.21): 
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which is selfadjoint with respect to the dual systems 
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The Gaussian function and its Fourier transform have same decay. In case of the wavelet transform 
the situation is different depending from the wavelet definition and the parameter a  e.g. leading to the 

Mexican hat wavelet function 
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In case of the proposed generalized wavelet model concept we note that for 
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and its related Hilbert transform   )(:)(; xHx aaH    it holds 
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The relationship     )()( xfAxfH   then defines a generalized wavelet alternatively to the Mexican hat with an 

appropriate decay in sync with the decay of the related Fourier transform of the to-be transformed function. 
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