There are certain relations between the spaces {Ha o > o} for different indices:
Lemma: Let ¢ < . Then
[, <],

and the embedding H , — H, is compact.

Lemma: Let o < < y. Then

Lemma: Let a<f<y.Toany xe H, and t>o0 thereisa y =y, (x) according to

D x=yl, <t
0 x=vl, <l v, <K,
i)yl <IN,

Corollary: Let ¢ < p<y.Toany xe H, and t> o thereis a y =y, (x) according to
) eyl <t for aspsp

) LSt for peosy

Remark: Our construction of the Hilbert scale is based on the operator A with the two
properties i) and ii). The domain D(A) of A equipped with the norm

| Ax|* = izzl:ﬂu?(x.(pi y

turned out to be the space H, which is densely and compactly embedded in H = H,,. It can

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with
the properties i) and ii) such that

D(A)=H, R(A)=H, and [x],=]Ax|.



We give three examples of differential operator and singular integral operators, whereby the
integral operators are related to each other by partial integration:

Example 1: Let H =1?(0,1) and
Au=-u
with
DU =W/, 0D =W, 09 AW, 0 -
Building on the orthogonal set of eigenpairs {4,,¢,} of A, i.e.
—p'=A4o PO =p@)=0

it holds the inclusion

1

D(A) H, = H, =W, (01) < (02)-

Example 2: Let H =L, () with I':= S*(R?), i.e. T is the boundary of the unit sphere. Then

H is the space of integrable periodic function in R . Let
(Au)() = ~flog 2sin == Fu(y)dy = fk(x— y(y)dy
and
D(A)=H = L..(I) -
The Fourier coefficients of this convolution are

1
Au) =ku =—u
( )v VoV 2“/

v

i.e.itholds D(A)cH,=H_,,I) .

A relation of this Fourier representation to the fractional function is given by

_Z“’:sin 27X

1
M-g=-2



Remark: We give some further background and analysis of the even function

k(x) =—In Zsinl Zsinl

= —log

Consider the model problem
—AU =0 in Q
U=f onI':=0Q,

whereby the area  is simply connected with sufficiently smooth boundary. Let
y = y(s)—s « (0,1] be a parametrization of the boundary 6C2 . Then for fixed Z the functions

U(X) = —log|x — Z|

Are solutions of the Lapace equation and for any L (60) - integrable function u = u(t) the
function

(Au)(X) = §log|x — u(t)[dt
aQ

is a solution of the model problem. In an appropriate Hilbert space H this defines an integral
operator ,which is coercive for certain areas Q and which fulfills the Garding inequality for
general areas Q) . We give the Fourier coefficient analysis in case of H =L} () with

I':=S'(R?), i.e. I'is the boundary of the unit sphere. Let x(s) := (cos(s),sin(s)) be a
parametrization of I := s*(R?) then it holds

2 S

- (COS(S) _cos(t)] =2-2cos(s—t) = 2(1—cos(25T_t)) = |:25|n ST} 4sin ?t

[x(s) - x| = sin(s) —sin(t)

and therefore

— log|x(s) — x(t)| = —log 2jsin S;t =k(s—t) -

The Fourier coefficients k, of the kernel k(x) are calculated as follows

2sin

k -—i§ k(x)e-““dx—izflog
" 2n 27 %,

Zsin£
2

: 2 ¢ t
eMdt=—-/lo —| cos()dt =k
Zﬂ! gl2sin | cos(t)dt =k,

As ¢log gsing _)00 partial integration leads to

z 25|n(vt)cost 1 ”sm( t) sin ( )
k, —sm(vt) -—j;dt_-—j . dt
o V7% 25|nE Y 25|nE

k, =-— i_[ (F +cos(t)..+ cos(vt)] —F +cos(t)..+ cos((v —1)t)})dt =- 1.
o L2 2 v



Extension and generalizations

For t > owe introduce an additional inner product resp. norm by

mw@=zfmumxmm

HXH(ZU = (X.%)gy -

Jat

Now the factor have exponential decay € '™ instead of a polynomial decay in case of A" .

Obviously we have

Xl < cle D, for xeH,

®

with c(a,t) depending only from a¢ and t > 0. Thus the (t) —norm is weaker than
any & —norm. On the other hand any negative norm, i.e. |x| with « <o, is bounded by the

0—normand the newly introduced (t) —norm. It holds:

Lemma: Let « > o be fixed. The oz —norm of any xe H, is bounded by

M, = &% X +e

2
X

with 6 > Qbeing arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of
the o —norm, which can be reformulated in the form (v >0, u+v>1)

I < vellx|} + ™"
applying Young'’s inequality to

X7 = Xz ¢

x|y -

The counterpart of lemma 4 above is

Lemma: Let t,0 > 0be fixed. Toany x € H, thereisa y =y, (x) according to

D =yl =l
iyl =7
i) Ix=yl, <e™lx -



Non Linear Problems

Let the problem be given by
F(x,u)=0
with the (roughly) regularity assumptions:
i) there is a unique solution

ii) F,F, are Lipschitz continuous.
The approximation problem is given by:
find peS, (F(.¢).x)=0 foryes, .

Error analysis
Put
f(x)=F,(x,u(x)) and ¢@=u-e¢

Then

(fe, ) =(R. 7)
with a remainder term
R=R(e)=F(,u—e)+ fe
resp.
(fe, ) = (fu—R(e). 7).

Let P, denote the L, —projection related to (f--) = (R, ), then
1
p=Ru- TR(E))

resp. e=(l —Ph)u+Ph%R(e)) =T(e) -

Therefore the difference e=u—e is a fix point of T .

Let
5. = el <7} and 7= influ-7,

With that some key properties of T are summaries in the following



Lemma:

i) There is a x> 0 such that for & sufficiently small, then T maps the ball B into itself.

ii) for & sufficiently small, T is a contradiction in B, .

Proof: i) Because of P, and f " are being bounded it holds
[1=Rl. <cinflu-z_=¢
and

RERE)| sclR@,

Lm

It is [Fu—e)+fe] <cle =cx?e?
with c;being the Lipschitz constant of F, . Therefore
HT(e)HLm S CEHCCKE” .

Now fixing x > ¢, and choosing &, according to x = ¢, +C,C,k°&, gives i)

ii) it holds
\Mw—T@m%=aé«mm—R@»Ls%mm—R@wa
and R(e)—R(e,) =F(,u—e)-F(,u—g)=(F(9-Fu)e-e) -
With FG9)=F(u-9%—-@1-9e,)
one gets IR, ¢ 9) - R u)| < wiey -
Choosing £< Min(so,i)

C,CsKk
then proves ii).

Consequence: The operator T has a unique fix-point in the ball B,.

From this it follows the

Theorem: The FEM admits the error estimate

lu=-el, <cinflu-z_ -



