There are certain relations between the spaces $\{H_{\alpha}|\alpha \geq 0\}$ for different indices:

Lemma: Let $\alpha < \beta$. Then

$$||x||_{\alpha} \leq ||x||_{\beta}$$

and the embedding $H_{\beta} \rightarrow H_{\alpha}$ is compact.

Lemma: Let $\alpha < \beta < \chi$. Then

$$\|x\|_{\beta} \le \|x\|_{\alpha}^{\mu} \|x\|_{\gamma}^{\nu} \text{ for } x \in H_{\gamma}$$

with $\mu = \frac{\gamma - \beta}{\gamma - \alpha}$ and $\nu = \frac{\beta - \alpha}{\gamma - \alpha}$.

Lemma: Let $\alpha < \beta < \gamma$. To any $x \in H_{\beta}$ and t > 0 there is a $y = y_t(x)$ according to

- i) $\|x y\|_{\alpha} \le t^{\beta \alpha} \|x\|_{\beta}$
- ii) $||x y||_{\beta} \le ||x||_{\beta}$, $||y||_{\beta} \le ||x||_{\beta}$
- iii) $\|y\|_{\gamma} \le t^{-(\gamma-\beta)} \|x\|_{\beta} .$

Corollary: Let $\alpha < \beta < \gamma$. To any $x \in H_{\beta}$ and t > 0 there is a $y = y_t(x)$ according to

- i) $||x y||_{\rho} \le t^{\beta \rho} ||x||_{\beta}$ for $\alpha \le \rho \le \beta$
- ii) $\|y\|_{\sigma} \le t^{-(\sigma-\beta)} \|x\|_{\beta}$ for $\beta \le \sigma \le \gamma$.

Remark: Our construction of the Hilbert scale is based on the operator A with the two properties i) and ii). The domain D(A) of A equipped with the norm

$$||Ax||^2 = \sum_{i=1}^n \lambda_i^2 (x, \varphi_i)^2$$

turned out to be the space H_2 which is densely and compactly embedded in $H=H_0$. It can be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with the properties i) and ii) such that

$$D(A) = H_2 R(A) = H_0 \text{ and } ||x||_2 = ||Ax||.$$

We give three examples of differential operator and singular integral operators, whereby the integral operators are related to each other by partial integration:

Example 1: Let $H = L^2(0,1)$ and

$$Au := -u''$$

with

$$D(A) = \overset{\bullet}{W}_{2}^{2}(0,1) := \overset{\circ}{W}_{2}^{1}(0,1) \cap \overset{\circ}{W}_{2}^{2}(0,1) \cdot$$

Building on the orthogonal set of eigenpairs $\left\{\lambda_{i},\varphi_{i}\right\}$ of A_{i} , i.e.

$$-\varphi_i'' = \lambda_i \varphi_i \qquad \varphi_i(0) = \varphi_i(1) = 0$$

it holds the inclusion

$$D(A) \subseteq H_A = H_1 = W_2^{(0,1)} \subseteq L^2(0,1)$$

Example 2: Let $H = L_{22}^*(\Gamma)$ with $\Gamma := S^1(R^2)$, i.e. Γ is the boundary of the unit sphere. Then H is the space of integrable periodic function in R. Let

$$(Au)(x) := -\oint \log 2\sin \frac{x - y}{2} u(y) dy = :\oint k(x - y)u(y) dy$$

and

$$D(A) = H = L_{22}^*(\Gamma) .$$

The Fourier coefficients of this convolution are

$$(Au)_{\nu} = k_{\nu}u_{\nu} = \frac{1}{2|\nu|}u_{\nu}$$

i.e. it holds $D(A) \subseteq H_A = H_{-1/2}(\Gamma)$.

A relation of this Fourier representation to the fractional function is given by

$$x - [x] - \frac{1}{2} = -\sum_{1}^{\infty} \frac{\sin 2\pi vx}{\pi v}$$

Remark: We give some further background and analysis of the even function

$$k(x) := -\ln\left|2\sin\frac{x}{2}\right| =: -\log\left|2\sin\frac{x}{2}\right|$$

Consider the model problem

$$-\Delta U = 0$$
 in Ω
$$U = f$$
 on $\Gamma := \partial \Omega$,

whereby the area Ω is simply connected with sufficiently smooth boundary. Let $y = y(s) - s \in \{0,1\}$ be a parametrization of the boundary $\partial\Omega$. Then for fixed \overline{z} the functions

$$U(\bar{x}) = -\log|\bar{x} - \bar{z}|$$

Are solutions of the Lapace equation and for any $L_1(\partial\Omega)$ — integrable function u=u(t) the function

$$(Au)(\bar{x}) := \int_{\partial\Omega} \log |\bar{x} - u(t)| dt$$

is a solution of the model problem. In an appropriate Hilbert space H this defines an integral operator ,which is coercive for certain areas Ω and which fulfills the Garding inequality for general areas Ω . We give the Fourier coefficient analysis in case of $H = L_2^*(\Gamma)$ with $\Gamma \coloneqq S^1(R^2)$, i.e. Γ is the boundary of the unit sphere. Let $x(s) \coloneqq (\cos(s), \sin(s))$ be a parametrization of $\Gamma \coloneqq S^1(R^2)$ then it holds

$$\left| x(s) - x(t) \right|^2 = \left| \frac{\cos(s) - \cos(t)}{\sin(s) - \sin(t)} \right|^2 = 2 - 2\cos(s - t) = 2(1 - \cos(2\frac{s - t}{2})) = 2\left[2\sin^2\frac{s - t}{2} \right] = 4\sin^2\frac{s - t}{2}$$

and therefore

$$-\log|x(s) - x(t)| = -\log 2 \left| \sin \frac{s - t}{2} \right| = k(s - t)$$

The Fourier coefficients k_{ν} of the kernel k(x) are calculated as follows

$$k_{\nu} := \frac{1}{2\pi} \oint k(x) e^{-i\nu x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \log \left| 2\sin\frac{t}{2} \right| e^{-i\nu t} dt = \frac{2}{2\pi} \int_{0}^{\pi} \log \left| 2\sin\frac{t}{2} \right| \cos(\nu t) dt = k_{-\nu}$$

As $\varepsilon \log 2\sin \frac{\varepsilon}{2} \underset{\varepsilon \to 0}{\longrightarrow} 0$ partial integration leads to

$$k_{v} = \frac{1}{v\pi}\sin(vt)\bigg|_{0}^{\pi} - \frac{1}{v\pi}\int_{0}^{\pi} \frac{2\sin(vt)\cos\frac{t}{2}}{2\sin\frac{t}{2}}dt = -\frac{1}{v\pi}\int_{0}^{\pi} \frac{\sin(\frac{2v+1}{2}t) - \sin(\frac{2v-1}{2}t)}{2\sin\frac{t}{2}}dt$$

$$k_{\nu} = -\frac{1}{\nu\pi} \int\limits_{0}^{\pi} \Big(\left[\frac{1}{2} + \cos(t) ... + \cos(\nu t) \right] - \left[\frac{1}{2} + \cos(t) ... + \cos((\nu - 1)t) \right] dt = -\frac{1}{\nu} \cdot$$

Extension and generalizations

For t > 0 we introduce an additional inner product resp. norm by

$$(x, y)_{(t)}^2 = \sum_{i=1}^{\infty} e^{-\sqrt{\lambda_i}t} (x, \varphi_i)(y, \varphi_i)$$

$$||x||_{(t)}^2 = (x,x)_{(t)}^2$$
.

Now the factor have exponential decay $e^{-\sqrt{\lambda_i}t}$ instead of a polynomial decay in case of λ_i^α . Obviously we have

$$||x||_{(t)} \le c(\alpha, t) ||x||_{\alpha}$$
 for $x \in H_{\alpha}$

with $c(\alpha,t)$ depending only from α and t>0. Thus the (t)-norm is weaker than any $\alpha-norm$. On the other hand any negative norm, i.e. $\|x\|_{\alpha}$ with $\alpha<0$, is bounded by the 0-norm and the newly introduced (t)-norm. It holds:

Lemma: Let $\alpha > 0$ be fixed. The $\alpha - norm$ of any $x \in H_0$ is bounded by

$$||x||^2 \le \delta^{2\alpha} ||x||_0^2 + e^{t/\delta} ||x||_{(t)}^2$$

with $\delta > 0$ being arbitrary.

Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of the $\alpha - norm$, which can be reformulated in the form $(\mu, \nu > 0, \mu + \nu > 1)$

$$\left\|x\right\|_{_{\theta}}^{2} \le v\varepsilon \left\|x\right\|_{_{\gamma}}^{2} + \mu e^{-v/\mu} \left\|x\right\|_{\alpha}^{2}$$

applying Young's inequality to

$$||x||_{\alpha}^{2} \le (||x||_{\alpha}^{2})^{\mu} (||x||_{\gamma}^{2})^{\nu} \cdot$$

The counterpart of lemma 4 above is

Lemma: Let $t, \delta > 0$ be fixed. To any $x \in H_0$ there is a $y = y_t(x)$ according to

- $||x y|| \le ||x||$
- ii) $||y||_1 \le \delta^{-1}||x||$
- iii) $||x y||_{(t)} \le e^{-t/\delta} ||x||$.

Non Linear Problems

Let the problem be given by

$$F(x,u) = 0$$

with the (roughly) regularity assumptions:

- i) there is a unique solution
- ii) F, F_u are Lipschitz continuous.

The approximation problem is given by:

find
$$\varphi \in S_h$$
 $(F(\cdot,\varphi),\chi) = 0$ for $\chi \in S_h$.

Error analysis

Put

$$f(x) = F_u(x, u(x))$$
 and $\varphi = u - e$

Then

$$(fe, \chi) = (R, \chi)$$

with a remainder term

$$R := R(e) := F(\cdot, u - e) + fe$$

resp.

$$(fe, \chi) = (fu - R(e), \chi).$$

Let $P_{\scriptscriptstyle h}$ denote the $L_{\scriptscriptstyle 2}$ – projection related to $(f\cdot,\cdot)$ = (R,χ) , then

$$\varphi = P_h(u - \frac{1}{f}R(e))$$

$$e = (I - P_h)u + P_h \frac{1}{f}R(e)) =: T(e) \cdot$$

Therefore the difference e = u - e is a fix point of T.

Let

$$B_{\kappa \bar{\varepsilon}} \coloneqq \left\{ e \middle\| e \middle\|_{L_{\infty}} \le \kappa \bar{\varepsilon} \right\} \text{ and } \bar{\varepsilon} \coloneqq \inf_{\chi \in S_h} \middle\| u - \chi \middle\|_{L_{\infty}}.$$

With that some key properties of T are summaries in the following

Lemma:

- i) There is a $\kappa > 0$ such that for $\bar{\varepsilon}$ sufficiently small, then T maps the ball $B_{\kappa\bar{\varepsilon}}$ into itself.
- ii) for $\bar{\varepsilon}$ sufficiently small, T is a contradiction in $B_{\kappa\bar{\varepsilon}}$.

Proof: i) Because of P_h and f^{-1} are being bounded it holds

$$||I - P_h||_{L_{\infty}} \le c_1 \inf_{\chi \in S_L} ||u - \chi||_{L_{\infty}} = \overline{\varepsilon}$$

and

$$\left\| P_h(\frac{1}{f}R(e)) \right\|_{L_{\infty}} \le c_2 \| R(e) \|_{L_{\infty}}.$$

It is

$$||F(\cdot, u - e) + fe||_{L_{\infty}} \le c_3 ||e||_{L_{\infty}}^2 = c_3 \kappa^2 \bar{\varepsilon}^2$$

$$||T(e)||_{L_{\infty}} \le c_1 \bar{\varepsilon} + c_3 c_2 \kappa^2 \bar{\varepsilon}^2$$
.

Now fixing $\kappa > c_1$ and choosing $\bar{\varepsilon}_0$ according to $\kappa = c_1 + c_3 c_2 \kappa^2 \bar{\varepsilon}_0$ gives i)

ii) it holds

$$\left\|T(e_1) - T(e_2)\right\|_{L_{\infty}} = \left\|P_h(\frac{1}{f}(R(e_1) - R(e_2))\right\|_{L_{\infty}} \le c_2 \|R(e_1) - R(e_2)\|_{L_{\infty}}$$

and $R(e_1) - R(e_2) = F(\cdot, u - e_1) - F(\cdot, u - e_2) = (F_u(\cdot, \theta) - F_u(u)(e_1 - e_2))$.

With $F_{u}(\cdot, \vartheta) = F_{u}(\cdot, u - \vartheta e_{1} - (1 - \vartheta)e_{2})$

one gets $||F_u(\cdot, \mathcal{G}) - F_u(\cdot, u)|| \le \kappa \bar{\varepsilon} c_3$.

Choosing $\bar{\varepsilon} < Min(\varepsilon_0, \frac{1}{c_2 c_3 \kappa})$

then proves ii).

Consequence: The operator T has a unique fix-point in the ball $B_{\kappa \bar{\epsilon}}$

From this it follows the

Theorem: The FEM admits the error estimate

$$||u - \varphi||_{L_{\infty}} \le c \inf_{\chi \in S_h} ||u - \chi||_{L_{\infty}}.$$